The Clausifications of the Premises
In this document, we list the first-order formulas, in
PROVER9 syntax, that we used to represent the logic of
the ontological argument in Oppenheimer and Zalta 1991. After each
formula, we show clauses into which they are transformed
when PROVER9 preprocesses them for its proof search.
The Logical Axioms and Theorems
Description Axiom
-Relation1(x) | -Relation1(y) | -Object(z) |
-Is_the(z,x) | -Ex1(y,z) | Object(f1(x,y,z)).
-Relation1(x) | -Relation1(y) | -Object(z) |
-Is_the(z,x) | -Ex1(y,z) | Ex1(x,f1(x,y,z)).
-Relation1(x) | -Relation1(y) | -Object(z) |
-Is_the(z,x) | -Ex1(y,z) | -Object(u) | -Ex1(x,u) | f1(x,y,z) = u.
-Relation1(x) | -Relation1(y) | -Object(z) |
-Is_the(z,x) | -Ex1(y,z) | Ex1(y,f1(x,y,z)).
-Relation1(x) | -Relation1(y) | -Object(z) |
Is_the(z,x) | -Object(u) | -Ex1(x,u) | Object(f2(x,y,z,u)) | -Ex1(y,u).
-Relation1(x) | -Relation1(y) | -Object(z) |
Is_the(z,x) | -Object(u) | -Ex1(x,u) | Ex1(x,f2(x,y,z,u)) | -Ex1(y,u).
-Relation1(x) | -Relation1(y) | -Object(z) |
Is_the(z,x) | -Object(u) | -Ex1(x,u) | f2(x,y,z,u) != u | -Ex1(y,u).
-Relation1(x) | -Relation1(y) | -Object(z) | Ex1(y,z) |
-Object(u) | -Ex1(x,u) | Object(f2(x,y,z,u)) | -Ex1(y,u).
-Relation1(x) | -Relation1(y) | -Object(z) | Ex1(y,z) |
-Object(u) | -Ex1(x,u) | Ex1(x,f2(x,y,z,u)) | -Ex1(y,u).
-Relation1(x) | -Relation1(y) | -Object(z) | Ex1(y,z) |
-Object(u) | -Ex1(x,u) | f2(x,y,z,u) != u | -Ex1(y,u).
Description Theorem 1
-Relation1(x) | -Object(y) | -Ex1(x,y) |
Object(f1(x,y)) | Object(f2(x)).
-Relation1(x) | -Object(y) | -Ex1(x,y) |
Object(f1(x,y)) | Is_the(f2(x),x).
-Relation1(x) | -Object(y) | -Ex1(x,y) |
Ex1(x,f1(x,y)) | Object(f2(x)).
-Relation1(x) | -Object(y) | -Ex1(x,y) |
Ex1(x,f1(x,y)) | Is_the(f2(x),x).
-Relation1(x) | -Object(y) | -Ex1(x,y) |
f1(x,y) != y | Object(f2(x)).
-Relation1(x) | -Object(y) | -Ex1(x,y) |
f1(x,y) != y | Is_the(f2(x),x).
Lemma 1
-Object(x) | -Relation1(y) | -Object(z) |
-Is_the(x,y) | z != x | Ex1(y,z).
Description Theorem 2
-Relation1(x) | -Object(y) |
-Is_the(y,x) | -Object(z) | -Is_the(z,x) | Ex1(x,z).
The Non-Logical Premises, Theorems, and Definitions
Connectedness of Greater Than
-Object(x) | -Object(y) |
Ex2(greater_than,x,y) | Ex2(greater_than,y,x) | y = x.
Definition of Nongreater
-Object(x) | -Ex1(none_greater,x) | Ex1(conceivable,x).
-Object(x) | -Ex1(none_greater,x) | -Object(y) |
-Ex2(greater_than,y,x) | -Ex1(conceivable,y).
-Object(x) | Ex1(none_greater,x) |
-Ex1(conceivable,x) | Object(f1(x)).
-Object(x) | Ex1(none_greater,x) |
-Ex1(conceivable,x) | Ex2(greater_than,f1(x),x).
-Object(x) | Ex1(none_greater,x) |
-Ex1(conceivable,x) | Ex1(conceivable,f1(x)).
Premise 1
Object(c1).
Ex1(none_greater,c1).
Lemma 2
-Object(x) | -Ex1(none_greater,x) | Object(c1).
-Object(x) | -Ex1(none_greater,x) | Ex1(none_greater,c1).
-Object(x) | -Ex1(none_greater,x) | -Object(y) | -Ex1(none_greater,y) | y = c1.
Premise 2
-Object(x) | -Is_the(x,none_greater) | Ex1(e,x) |
Object(f1(x)).
-Object(x) | -Is_the(x,none_greater) | Ex1(e,x) |
Ex2(greater_than,f1(x),x).
-Object(x) | -Is_the(x,none_greater) | Ex1(e,x) |
Ex1(conceivable,f1(x)).
Definition of God
Is_the(g,none_greater).