Semantics for Typed Object Theory

Edward N. Zalta

Interpretations

The following assumes familiarity with the technical definition of type and the use of $\bar{\varepsilon}$-terms, as found in the document "The Systems of Principia Logico-Metaphysica" (http://mally.stanford.edu/systems.pdf).

$$
\mathcal{I}=\left\langle\mathrm{D}, \mathrm{~W}, T, F, \operatorname{ext}_{w}, \mathrm{enc}_{w}, \mathrm{ex}_{w}, \mathrm{~V}, \mathrm{C}\right\rangle
$$

where:

- \mathbf{D} is the general union of non-empty domains \mathbf{D}_{t}, for every type t; i.e., $\mathbf{D}=\bigcup_{t} \mathbf{D}_{t}$. We often use \boldsymbol{o}^{t} as a variable ranging over the elements of \mathbf{D}_{t}; use \boldsymbol{r} as a variable ranging over the elements of $\mathbf{D}_{\left\langle t_{1}, \ldots, t_{n}\right\rangle}$, where t_{1}, \ldots, t_{n} are any types and $n \geq 1$; and use \boldsymbol{p} as a variable ranging over the elements of $\mathbf{D}_{\langle \rangle}$,
- W is a non-empty set of possible worlds with a distinguished element \boldsymbol{w}_{0}; we use \boldsymbol{w} as a variable ranging over the elements of \mathbf{W},
- \boldsymbol{T} is the truth-value The True,
- \boldsymbol{F} is the truth-value The False,
- $\boldsymbol{e x t}_{\boldsymbol{w}}$ is a binary exemplification extension function indexed to its second argument; ext \boldsymbol{w} maps each relation \boldsymbol{r} in $\mathbf{D}_{\left\langle t_{1}, \ldots, t_{n}\right\rangle}(n \geq 1)$ and world \boldsymbol{w} to a set of n-tuples whose elements have types t_{1}, \ldots, t_{n}, respectively, so that $\operatorname{ext}_{\boldsymbol{w}}(\boldsymbol{r})$ serves as the exemplification extension of \boldsymbol{r} at $\boldsymbol{w},{ }^{1}$
- enc $_{\boldsymbol{w}}$ is a binary encoding extension function indexed to its second argument; enc $\boldsymbol{w}_{\boldsymbol{w}}$ maps each relation \boldsymbol{r} in $\mathbf{D}_{\left\langle t_{1}, \ldots, t_{n}\right\rangle}(n \geq 1)$ and world \boldsymbol{w} to a set of n-tuples whose elements have types t_{1}, \ldots, t_{n}, respectively, so that $\mathrm{enc}_{\boldsymbol{w}}(\boldsymbol{r})$ serves as the encoding extension of \boldsymbol{r} at \boldsymbol{w},
- $\mathbf{e x}_{\boldsymbol{w}}$ is a binary extension function indexed to its second argument; $\mathbf{e x}_{\boldsymbol{w}}$ maps each proposition \boldsymbol{p} in $\mathbf{D}_{\langle \rangle}$and world \boldsymbol{w} to one of the truth-values $(\boldsymbol{T}$ or $\boldsymbol{F})$ so that $\mathbf{e x}_{\boldsymbol{w}}(\boldsymbol{p})$ serves as the extension of \boldsymbol{p} at \boldsymbol{w},
- \mathbf{V} is an interpretation function that assigns each the primitive constant of type t to an element of the domain \mathbf{D}_{t}, and
- C is a choice function that takes, as argument, any semantic formula \boldsymbol{A} having a single free variable that ranges over some domain \mathbf{D}_{t}, for $t \neq i$, and returns an arbitrary but determinate value in \mathbf{D}_{t} that satisfies \boldsymbol{A} if there is one, and is undefined otherwise. If the semantic $\bar{\varepsilon}$-term has the form $\bar{\varepsilon} \boldsymbol{r}^{n} \boldsymbol{A}$, where \boldsymbol{r}^{n} is a semantic variable that ranges over the n-ary relations ($n \geq 0$) in the domain $\mathbf{D}_{\left\langle t_{1}, \ldots, t_{n}\right\rangle}$, then the object $\mathbf{C}(\boldsymbol{A})$ is an entity of type $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ that serves as the value of the term. For example, if \boldsymbol{A} has \boldsymbol{r} free and \boldsymbol{r} ranges over relations in $\mathbf{D}_{\langle i, i\rangle}$ (i.e., ranges over binary relations among individuals), then the semantic term $\bar{\varepsilon} \boldsymbol{r}^{n} \boldsymbol{A}$ denotes $\mathbf{C}(\boldsymbol{A})$, where the latter is an arbitrary but determinate relation in $\mathbf{D}_{\langle i, i\rangle}$ that satisfies \boldsymbol{A}, if there is one. Similarly, if \boldsymbol{A} has \boldsymbol{p} free, where \boldsymbol{p} ranges over $\mathbf{D}_{\langle \rangle}$, then $\bar{\varepsilon} \boldsymbol{p} \boldsymbol{A}$ denotes $\mathbf{C}(\boldsymbol{A})$, where the latter is an arbitrary but determinate proposition in $\mathbf{D}_{\langle \rangle}$that satisfies \boldsymbol{A}, if there is one.

Assignments to Variables

Given such a structure \mathcal{I}, let \boldsymbol{w} range over the primitive possible worlds in \mathbf{W}, and let f be a assignment function relative to \mathcal{I} that assigns to each variable α^{t} an element of the domain \mathbf{D}_{t}. (For ease of readability, we always omit the index on f that relativizes it to \mathcal{I}.)

[^0]
$\boldsymbol{d}_{\mathcal{I}, f}(\tau)$ and $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ Defined Simultaneously

Then we shall assign denotations to the terms and truth conditions to the formulas by defining the following notions simultaneously:

$$
\begin{aligned}
& \boldsymbol{d}_{\mathcal{I}, f}(\tau) \text {, i.e., the denotation of } \tau \text { relative to } \mathcal{I} \text { and } f \\
& \boldsymbol{w} \models_{\mathcal{I}, f} \varphi \text {, i.e., under } \mathcal{I} \text { and } f, \varphi \text { is true at } \boldsymbol{w}
\end{aligned}
$$

The definitions are given in full below but note that, in what follows, we are re-purposing the symbol \vDash for the semantics. When we use \vDash in a semantic context in what follows, it is to be understood as representing a semantic notion, and not the object-theoretic notion p is true in $s(s \vDash p)$ defined in object-theoretic situation theory.

Intuitively, $\boldsymbol{d}_{\mathcal{I}, f}$ is a partial denotation function which, relative to an interpretation \mathcal{I} and variable assignment f, assigns to every term τ of type t an element of the domain \mathbf{D}_{t} if τ is significant, and nothing otherwise. And, $\boldsymbol{w} \models_{I, f} \varphi$ states the truth conditions of φ at world \boldsymbol{w}, relative to \mathcal{I} and f. Now let:

- I be any interpretation and f be any assignment function,
- \mathbf{V} be the interpretation function of \mathcal{I},
- $f\left[\alpha^{t} / o^{t}\right]$ be the variable assignment just like f except that it assigns the entity \boldsymbol{o}^{t} to the variable $\alpha^{t},{ }^{2}$ and
- $f\left[\alpha^{t_{i}} / \boldsymbol{o}^{t_{i}}\right]_{i=1}^{n}$ be the variable assignment just like f but which assigns the entities $\boldsymbol{o}^{t_{1}}, \ldots, \boldsymbol{o}^{t_{n}}$, respectively, to the variables $\alpha^{t_{1}}, \ldots, \alpha^{t_{n}}$, for $1 \leq i \leq n$

And let us adopt the convention of omitting the type index on a symbol after its first use in a semantic formula whenever it can be done without ambiguity. Then the simultaneous definition of denotation and world-relative truth, relative to \mathcal{I} and f, proceeds as follows:

Base Clauses

D1. If τ is a constant of type t, then $\boldsymbol{d}_{\mathcal{I}, f}(\tau)=\mathbf{V}(\tau)$
D2. If τ is a variable of type t, then $\boldsymbol{d}_{\mathcal{I}, f}(\tau)=f(\tau)$
T1. If φ is a formula in Base ${ }^{〔}$, i.e., if φ is a constant, variable, or description of type $\left\rangle\right.$, then $\boldsymbol{w} \vDash_{\mathcal{I}, f} \varphi$ if and only if $\exists \boldsymbol{p}^{\text {\ }}\left(\boldsymbol{p}=\boldsymbol{d}_{\mathcal{I}, f}(\varphi) \& \mathbf{e x}_{\boldsymbol{w}}(\boldsymbol{p})=\boldsymbol{T}\right)$
T2. If φ is a formula of the form $\Pi^{\left\langle t_{1}, \ldots, t_{n}\right\rangle} \tau^{t_{1}} \ldots \tau^{t_{n}}(n \geq 1)$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if $\exists \boldsymbol{r}^{\left\langle t_{1}, \ldots, t_{n}\right\rangle} \exists \boldsymbol{o}^{t_{1}} \ldots \exists \boldsymbol{o}^{t_{n}}(\boldsymbol{r}=$ $\left.\boldsymbol{d}_{\mathcal{I}, f}(\Pi) \& \boldsymbol{o}^{t_{1}}=\boldsymbol{d}_{\mathcal{I}, f}\left(\tau^{t_{1}}\right) \& \ldots \& \boldsymbol{o}^{t_{n}}=\boldsymbol{d}_{\mathcal{I}, f}\left(\tau^{t_{n}}\right) \&\left\langle\boldsymbol{o}^{t_{1}}, \ldots, \boldsymbol{o}^{t_{n}}\right\rangle \in \operatorname{ext}_{\boldsymbol{w}}(\boldsymbol{r})\right)$
T3. If φ is a formula of the form $\tau^{t_{1}} \ldots \tau^{t_{n}} \Pi^{\left\langle t_{1}, \ldots, t_{n}\right\rangle}(n \geq 1)$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if $\exists \boldsymbol{o}^{t_{1}} \ldots \exists \boldsymbol{o}^{t_{n}} \exists \boldsymbol{r}^{\left\langle t_{1}, \ldots, t_{n}\right\rangle}\left(\boldsymbol{o}^{t_{1}}=\right.$ $\left.\boldsymbol{d}_{\mathcal{I}, f}\left(\tau^{t_{1}}\right) \& \ldots \& \boldsymbol{o}^{t_{n}}=\boldsymbol{d}_{\mathcal{I}, f}\left(\tau^{t_{n}}\right) \& \boldsymbol{r}=\boldsymbol{d}_{\mathcal{I}, f}(\Pi) \&\left\langle\boldsymbol{o}^{t_{1}}, \ldots, \boldsymbol{o}^{t_{n}}\right\rangle \in \operatorname{enc}_{\boldsymbol{w}}(\boldsymbol{r})\right)$

Recursive Clauses

T4. If φ is a formula of the form $[\lambda \psi]$, then $\boldsymbol{w} \vDash_{I, f} \varphi$ if and only if $\boldsymbol{w} \vDash_{I, f} \psi$
T5. If φ is a formula of the form $\neg \psi$, then $\boldsymbol{w} \vDash_{I, f} \varphi$ if and only if it is not the case that $\boldsymbol{w} \vDash_{I, f} \psi$, i.e., iff $\boldsymbol{w} \not \models_{I, f} \psi$

[^1]T6. If φ is a formula of the form $\psi \rightarrow \chi$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if either it is not the case that $\boldsymbol{w} \models_{I, f} \psi$ or it is the case that $\boldsymbol{w} \models_{I, f} \chi$, i.e., iff either $\boldsymbol{w} \not \models_{I, f} \psi$ or $\boldsymbol{w} \models_{\mathcal{I}, f} \chi$

T7. If φ is a formula of the form $\forall \alpha^{t} \psi$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if
$\forall \boldsymbol{o}^{t}\left(\boldsymbol{w} \vDash_{\mathcal{I}, f[\alpha / o]} \psi\right)$
T8. If φ is a formula of the form $\square \psi$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if $\forall \boldsymbol{w}^{\prime}\left(\boldsymbol{w}^{\prime} \models_{I, f} \psi\right)$
T9. If φ is a formula of the form $\mathscr{A} \psi$, then $\boldsymbol{w} \models_{\mathcal{I}, f} \varphi$ if and only if $\boldsymbol{w}_{0} \models_{\mathcal{I}, f} \psi$.
D3. If τ is a description of the form $\tau \alpha^{t} \varphi$, then

$$
\boldsymbol{d}_{\mathcal{I}, f}(\tau)=\left\{\begin{array}{l}
\boldsymbol{o}^{t}, \text { if } \boldsymbol{w}_{0} \models_{\mathcal{I}, f[\alpha / \boldsymbol{o}]} \varphi \& \forall \boldsymbol{o}^{\prime}\left(\boldsymbol{w}_{0} \vDash_{\mathcal{I}, f\left[\alpha / \boldsymbol{o}^{\prime}\right]} \varphi \rightarrow \boldsymbol{o}^{\prime}=\boldsymbol{o}\right) \\
\text { undefined, otherwise }
\end{array}\right.
$$

where \boldsymbol{o}^{\prime} also ranges over the entities in \mathbf{D}_{t}
D4. If τ is an n-ary λ-expression $(n \geq 1)$ of the form $\left[\lambda \alpha^{t_{1}} \ldots \alpha^{t_{n}} \varphi\right.$], then

$$
\boldsymbol{d}_{\mathcal{I}, f}(\tau)=\left\{\begin{array}{l}
\bar{\varepsilon} \boldsymbol{r}^{\left\langle t_{1}, \ldots, t_{n}\right\rangle \forall \boldsymbol{w} \forall \boldsymbol{o}^{t_{1}} \ldots \forall \boldsymbol{o}^{t_{n}}\left(\left\langle\boldsymbol{o}^{t_{1}}, \ldots, \boldsymbol{o}^{t_{n}}\right\rangle \in \operatorname{ext}_{\boldsymbol{w}}(\boldsymbol{r}) \equiv \boldsymbol{w} \vDash_{\mathcal{I}, f\left[\alpha^{t_{i}} / \boldsymbol{o}^{t_{i}}\right]_{i=1}^{n}} \varphi\right),} \begin{array}{l}
\quad \text { if there is one } \\
\text { undefined, otherwise }
\end{array}
\end{array}\right.
$$

where $\bar{\varepsilon} \boldsymbol{r} \boldsymbol{A}=\mathbf{C}(\boldsymbol{A})$ and \mathbf{C} is the choice function of the interpretation.
D5. If τ is an 0 -ary λ-expression of the form $[\lambda \varphi]$, then

$$
\boldsymbol{d}_{\mathcal{I}, f}(\tau)=\bar{\varepsilon} \boldsymbol{p}^{\langle \rangle} \forall \boldsymbol{w}\left(\mathbf{e x}_{\boldsymbol{w}}(\boldsymbol{p})=\boldsymbol{T} \equiv \boldsymbol{w} \models_{\mathcal{I}, f} \varphi\right)
$$

where $\bar{\varepsilon} \boldsymbol{p} \boldsymbol{A}=\mathbf{C}(\boldsymbol{A})$ and \mathbf{C} is the choice function of the interpretation.
D6. If τ is a term of type \rangle, i.e., if τ is a formula φ, then:

- if φ is a formula in Base ${ }^{\langle \rangle} \boldsymbol{d}_{\mathcal{I}, f}(\tau)$ is given by D1 - D3
- if φ is a formula of the form $[\lambda \varphi]$, then $\boldsymbol{d}_{\mathcal{I}, f}(\tau)$ is given by D5
- if φ is a formula of any other form, then $\boldsymbol{d}_{\mathcal{I}, f}(\tau)=\boldsymbol{d}_{\mathcal{I}, f}([\lambda \varphi])$

Definitions of Truth, Logical Truth (Validity), and Logical Consequence

Now where \mathcal{I} and f are given and \boldsymbol{w}_{0} is the distinguished actual world of the domain of possible worlds \mathbf{W} in \mathcal{I}, we say that φ is true under \mathcal{I} and $f\left(\operatorname{true}_{\mathcal{I}, f}\right)$ if and only if under \mathcal{I} and f, φ is true at \boldsymbol{w}_{0}. That is, using the formal notation $\vDash_{I, f} \varphi$ for the definiendum, we have:

$$
\models_{\mathcal{I}, f} \varphi \text { if and only if } \boldsymbol{w}_{0} \models_{\mathcal{I}, f} \varphi
$$

And we now say that φ is true under \mathcal{I} just in case for every f, φ is true under \mathcal{I} and f :

$$
\models_{I} \varphi={ }_{d f} \forall f\left(\models_{\mathcal{I}, f} \varphi\right)
$$

Thus, if φ is not true under \mathcal{I}, then some assignment f is such that $\boldsymbol{w}_{0} \not \forall_{\mathcal{I}, f} \varphi$ and we write $\not \forall_{\mathcal{I}} \varphi$. We say that a formula φ is false under \mathcal{I} if and only if no assignment function f is such that $\vDash_{\mathcal{I}, f} \varphi$, i.e., iff no assignment function f is such that $\boldsymbol{w}_{0} \vDash_{\mathcal{I}, f} \varphi$. So open formulas may be neither true under \mathcal{I} nor false under \mathcal{I}, whereas a sentence (i.e., a closed formula) will be either true under \mathcal{I} or false under \mathcal{I}.

In the usual manner, we say that φ is valid or logically true if and only if φ is true under every interpretation \mathcal{I}, i.e.,

$$
\vDash \varphi={ }_{d f} \forall \mathcal{I}\left(\models_{\mathcal{I}} \varphi\right)
$$

Clearly, given our previous definitions, it follows that:
$\vDash \varphi$ if and only if for every \mathcal{I} and $f, \models_{I, f} \varphi$, i.e.,
$\vDash \varphi$ if and only if for every \mathcal{I} and $f, \boldsymbol{w}_{0} \vDash_{\mathcal{I}, f} \varphi$
In what follows, when we say that a schema is valid, we mean that all of its instances are valid. Clearly, if a formula φ is not valid, then for some interpretation \mathcal{I} and assignment $f, \boldsymbol{w}_{0} \not \vDash_{\mathcal{I}, f} \varphi$.

Finally, we conclude the definitions for a general interpretation with several more traditional definitions:

- φ is satisfiable if and only if there is some interpretation \mathcal{I} and assignment f such that φ is $\operatorname{true}_{\mathcal{I}, f}$, i.e., iff $\exists \mathcal{I} \exists f\left(\vDash_{I, f} \varphi\right)$.
- φ logically implies ψ (or ψ is a logical consequence of φ) just in case, for every interpretation \mathcal{I} and assignment f, if φ is $\operatorname{true}_{\mathcal{I}, f}$, then ψ is $\operatorname{true}_{\mathcal{I}, f}$:

$$
\varphi \vDash \psi=_{d f} \forall I \forall f\left(\vDash_{I, f} \varphi \rightarrow \vDash_{I, f} \psi\right)
$$

- φ and ψ are logically equivalent just in case both $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- φ is a logical consequence of a set of formulas Γ just in case, for every interpretation \mathcal{I} and assignment f, if every member of Γ is $\operatorname{true}_{\mathcal{I}, f}$, then φ is $\operatorname{true}_{\mathcal{I}, f}$:

$$
\Gamma \vDash \varphi=_{d f} \forall I \forall f\left[\forall \psi\left(\psi \in \Gamma \rightarrow \vDash_{I, f} \psi\right) \rightarrow \models_{I, f} \varphi\right]
$$

[^0]: ${ }^{1}$ By convention, $\operatorname{ext}_{\boldsymbol{w}}$ maps each relation unary relation \boldsymbol{r} in $\mathbf{D}_{\langle t\rangle}(n \geq 1)$ and world \boldsymbol{w} to a subset of \mathbf{D}_{t}.

[^1]: ${ }^{2}$ This can be defined formally in one of two ways, suppressing the type index. If an assignment function f is represented as a set of ordered pairs, then where α is a variable and o is an entity from the domain over which α ranges:
 $f[\alpha / o]=(f \sim\langle\alpha, f(\alpha)\rangle) \cup\{\langle\alpha, o\rangle\}$
 I.e., $f[\alpha / o]$ is the result of removing the pair $\langle\alpha, f(\alpha)\rangle$ from f and replacing it with the pair $\langle\alpha, \boldsymbol{o}\rangle$.

 Alternatively, we can define $f[\alpha / o]$ functionally, where β is a variable ranging over the same domain as α, as:

 $$
 f[\alpha / o](\beta)= \begin{cases}f(\beta), & \text { if } \beta \neq \alpha \\ o, & \text { if } \beta=\alpha\end{cases}
 $$

