Semantics for Typed Object Theory

Edward N. Zalta

Interpretations

The following assumes familiarity with the technical definition of *type* and the use of $\bar{\varepsilon}$ -terms, as found in the document "The Systems of *Principia Logico-Metaphysica*" (http://mally.stanford.edu/systems.pdf).

$$\mathcal{I} = \langle \mathbf{D}, \mathbf{W}, \mathbf{T}, \mathbf{F}, \mathsf{ext}_{w}, \mathsf{enc}_{w}, \mathsf{ex}_{w}, \mathsf{V}, \mathsf{C} \rangle,$$

where:

- **D** is the general union of non-empty domains \mathbf{D}_t , for every type t; i.e., $\mathbf{D} = \bigcup_t \mathbf{D}_t$. We often use o^t as a variable ranging over the elements of \mathbf{D}_t ; use r as a variable ranging over the elements of $\mathbf{D}_{\langle t_1,...,t_n \rangle}$, where $t_1,...,t_n$ are any types and $n \ge 1$; and use p as a variable ranging over the elements of $\mathbf{D}_{\langle \rangle}$,
- W is a non-empty set of possible worlds with a *distinguished element* w_0 ; we use w as a variable ranging over the elements of W,
- *T* is the truth-value The True,
- **F** is the truth-value The False,
- ext_w is a binary *exemplification extension* function indexed to its second argument; ext_w maps each relation r in $\mathbf{D}_{\langle t_1,...,t_n \rangle}$ $(n \ge 1)$ and world w to a set of *n*-tuples whose elements have types $t_1,...,t_n$, respectively, so that $ext_w(r)$ serves as the exemplification extension of r at w,¹
- **enc**_w is a binary *encoding extension* function indexed to its second argument; **enc**_w maps each relation r in $\mathbf{D}_{(t_1,...,t_n)}$ $(n \ge 1)$ and world w to a set of n-tuples whose elements have types $t_1,...,t_n$, respectively, so that **enc**_w(r) serves as the encoding extension of r at w,
- \mathbf{ex}_w is a binary *extension* function indexed to its second argument; \mathbf{ex}_w maps each proposition p in $\mathbf{D}_{\langle \rangle}$ and world w to one of the truth-values (T or F) so that $\mathbf{ex}_w(p)$ serves as the extension of p at w,
- V is an interpretation function that assigns each the primitive constant of type *t* to an element of the domain D_t, and
- C is a choice function that takes, as argument, any semantic formula A having a single free variable that ranges over some domain \mathbf{D}_t , for $t \neq i$, and returns an arbitrary but determinate value in \mathbf{D}_t that satisfies A if there is one, and is undefined otherwise. If the semantic $\bar{\varepsilon}$ -term has the form $\bar{\varepsilon}\mathbf{r}^n A$, where \mathbf{r}^n is a semantic variable that ranges over the *n*-ary relations ($n \geq 0$) in the domain $\mathbf{D}_{\langle t_1,...,t_n \rangle}$, then the object $\mathbf{C}(A)$ is an entity of type $\langle t_1,...,t_n \rangle$ that serves as the value of the term. For example, if A has r free and r ranges over relations in $\mathbf{D}_{\langle i,i \rangle}$ (i.e., ranges over binary relations among individuals), then the semantic term $\bar{\varepsilon}\mathbf{r}^n A$ denotes $\mathbf{C}(A)$, where the latter is an arbitrary but determinate relation in $\mathbf{D}_{\langle i,i \rangle}$ that satisfies A, if there is one. Similarly, if A has p free, where p ranges over $\mathbf{D}_{\langle \rangle}$, then $\bar{\varepsilon}pA$ denotes $\mathbf{C}(A)$, where the latter is an arbitrary but determinate relation in $\mathbf{D}_{\langle i,i \rangle}$ that satisfies A, if there is an arbitrary but determinate relation in $\mathbf{D}_{\langle i,i \rangle}$ that satisfies A, if there is an arbitrary but determinate relation in $\mathbf{D}_{\langle i,i \rangle}$ that satisfies A, if there is an arbitrary but determinate proposition in $\mathbf{D}_{\langle i,i \rangle}$ that satisfies A, if there is one.

Assignments to Variables

Given such a structure \mathcal{I} , let w range over the primitive possible worlds in W, and let f be a *assignment function* relative to \mathcal{I} that assigns to each variable α^t an element of the domain \mathbf{D}_t . (For ease of readability, we always omit the index on f that relativizes it to \mathcal{I} .)

¹By convention, **ext**_{*w*} maps each relation unary relation *r* in $\mathbf{D}_{\langle t \rangle}$ (*n* \geq 1) and world *w* to a subset of \mathbf{D}_t .

$d_{\mathcal{I},f}(\tau)$ and $w \models_{\mathcal{I},f} \varphi$ Defined Simultaneously

Then we shall assign denotations to the terms and truth conditions to the formulas by defining the following notions simultaneously:

 $d_{\mathcal{I},f}(\tau)$, i.e., the denotation of τ relative to \mathcal{I} and f $w \models_{\mathcal{I},f} \varphi$, i.e., *under* \mathcal{I} and f, φ *is true at* w

The definitions are given in full below but note that, in what follows, we are re-purposing the symbol \models for the semantics. When we use \models in a semantic context in what follows, it is to be understood as representing a semantic notion, and not the object-theoretic notion *p* is true in *s* (*s* \models *p*) defined in object-theoretic situation theory.

Intuitively, $d_{\mathcal{I},f}$ is a partial denotation function which, relative to an interpretation \mathcal{I} and variable assignment f, assigns to every term τ of type t an element of the domain \mathbf{D}_t if τ is significant, and nothing otherwise. And, $w \models_{\mathcal{I},f} \varphi$ states the truth conditions of φ at world w, relative to \mathcal{I} and f. Now let:

- \mathcal{I} be any interpretation and f be any assignment function,
- V be the interpretation function of \mathcal{I} ,
- $f[\alpha^t/o^t]$ be the variable assignment just like f except that it assigns the entity o^t to the variable α^t , and
- $f[\alpha^{t_i}/o^{t_i}]_{i=1}^n$ be the variable assignment just like f but which assigns the entities o^{t_1}, \dots, o^{t_n} , respectively, to the variables $\alpha^{t_1}, \dots, \alpha^{t_n}$, for $1 \le i \le n$

And let us adopt the convention of omitting the type index on a symbol after its first use in a semantic formula whenever it can be done without ambiguity. Then the simultaneous definition of denotation and world-relative truth, relative to \mathcal{I} and f, proceeds as follows:

Base Clauses

- D1. If τ is a constant of type *t*, then $d_{\mathcal{I},f}(\tau) = \mathbf{V}(\tau)$
- D2. If τ is a variable of type *t*, then $d_{\mathcal{I},f}(\tau) = f(\tau)$
- T1. If φ is a formula in $Base^{\langle \rangle}$, i.e., if φ is a constant, variable, or description of type $\langle \rangle$, then $w \models_{\mathcal{I},f} \varphi$ if and only if $\exists p^{\langle \rangle}(p = d_{\mathcal{I},f}(\varphi) \& ex_w(p) = T)$
- T2. If φ is a formula of the form $\Pi^{\langle t_1, \dots, t_n \rangle} \tau^{t_1} \dots \tau^{t_n} (n \ge 1)$, then $w \models_{\mathcal{I}, f} \varphi$ if and only if $\exists r^{\langle t_1, \dots, t_n \rangle} \exists o^{t_1} \dots \exists o^{t_n} (r = d_{\mathcal{I}, f}(\Pi) \& o^{t_1} = d_{\mathcal{I}, f}(\tau^{t_1}) \& \dots \& o^{t_n} = d_{\mathcal{I}, f}(\tau^{t_n}) \& \langle o^{t_1}, \dots, o^{t_n} \rangle \in \mathbf{ext}_w(r)$
- T3. If φ is a formula of the form $\tau^{t_1} \dots \tau^{t_n} \Pi^{\langle t_1, \dots, t_n \rangle}$ $(n \ge 1)$, then $w \models_{\mathcal{I}, f} \varphi$ if and only if $\exists o^{t_1} \dots \exists o^{t_n} \exists r^{\langle t_1, \dots, t_n \rangle} (o^{t_1} = d_{\mathcal{I}, f}(\tau^{t_1}) \& \dots \& o^{t_n} = d_{\mathcal{I}, f}(\tau^{t_n}) \& r = d_{\mathcal{I}, f}(\Pi) \& \langle o^{t_1}, \dots, o^{t_n} \rangle \in \mathbf{enc}_w(r))$

Recursive Clauses

- T4. If φ is a formula of the form $[\lambda \psi]$, then $w \models_{\mathcal{I},f} \varphi$ if and only if $w \models_{\mathcal{I},f} \psi$
- T5. If φ is a formula of the form $\neg \psi$, then $w \models_{\mathcal{I},f} \varphi$ if and only if it is not the case that $w \models_{\mathcal{I},f} \psi$, i.e., iff $w \not\models_{\mathcal{I},f} \psi$

 $f[\alpha/\boldsymbol{o}] = (f \sim \langle \alpha, f(\alpha) \rangle) \cup \{\langle \alpha, \boldsymbol{o} \rangle\}$

I.e., $f[\alpha/\sigma]$ is the result of removing the pair $\langle \alpha, f(\alpha) \rangle$ from f and replacing it with the pair $\langle \alpha, \sigma \rangle$. Alternatively, we can define $f[\alpha/\sigma]$ functionally, where β is a variable ranging over the same domain as α , as:

 $f[\alpha/\boldsymbol{o}](\beta) = \begin{cases} f(\beta), \text{if } \beta \neq \alpha \\ \boldsymbol{o}, \quad \text{if } \beta = \alpha \end{cases}$

²This can be defined formally in one of two ways, suppressing the type index. If an assignment function f is represented as a set of ordered pairs, then where α is a variable and o is an entity from the domain over which α ranges:

- T6. If φ is a formula of the form $\psi \to \chi$, then $w \models_{\mathcal{I},f} \varphi$ if and only if either it is not the case that $w \models_{\mathcal{I},f} \psi$ or it is the case that $w \models_{\mathcal{I},f} \chi$, i.e., iff either $w \not\models_{\mathcal{I},f} \psi$ or $w \models_{\mathcal{I},f} \chi$
- T7. If φ is a formula of the form $\forall \alpha^t \psi$, then $w \models_{\mathcal{I}, f} \varphi$ if and only if $\forall o^t (w \models_{\mathcal{I}, f[\alpha/o]} \psi)$
- T8. If φ is a formula of the form $\Box \psi$, then $w \models_{\mathcal{I},f} \varphi$ if and only if $\forall w'(w' \models_{\mathcal{I},f} \psi)$
- T9. If φ is a formula of the form $\mathscr{A}\psi$, then $w \models_{\mathcal{I},f} \varphi$ if and only if $w_0 \models_{\mathcal{I},f} \psi$.
- D3. If τ is a description of the form $\iota \alpha^t \varphi$, then

$$d_{\mathcal{I},f}(\tau) = \begin{cases} o^{t}, \text{ if } w_{0} \models_{\mathcal{I},f[\alpha/o]} \varphi \& \forall o'(w_{0} \models_{\mathcal{I},f[\alpha/o']} \varphi \to o' = o) \\ \text{undefined, otherwise} \end{cases}$$

where o' also ranges over the entities in D_t

D4. If τ is an *n*-ary λ -expression ($n \ge 1$) of the form [$\lambda \alpha^{t_1} \dots \alpha^{t_n} \varphi$], then

$$\boldsymbol{d}_{\mathcal{I},f}(\tau) = \begin{cases} \bar{\varepsilon} \boldsymbol{r}^{\langle t_1,\dots,t_n \rangle} \forall \boldsymbol{w} \forall \boldsymbol{o}^{t_1} \dots \forall \boldsymbol{o}^{t_n} (\langle \boldsymbol{o}^{t_1},\dots,\boldsymbol{o}^{t_n} \rangle \in \mathbf{ext}_{\boldsymbol{w}}(\boldsymbol{r}) \equiv \boldsymbol{w} \models_{\mathcal{I},f[\alpha^{t_i}/\boldsymbol{o}^{t_i}]_{i=1}^n} \varphi), \\ \text{if there is one} \\ \text{undefined, otherwise} \end{cases}$$

where $\bar{\varepsilon} r A = C(A)$ and C is the choice function of the interpretation.

D5. If τ is an 0-ary λ -expression of the form $[\lambda \varphi]$, then

$$d_{\mathcal{I},f}(\tau) = \bar{\varepsilon} p^{\langle \rangle} \forall w(\mathbf{ex}_w(p) = T \equiv w \models_{\mathcal{I},f} \varphi)$$

where $\bar{\epsilon} p A = C(A)$ and C is the choice function of the interpretation.

D6. If τ is a term of type $\langle \rangle$, i.e., if τ is a formula φ , then:

- if φ is a formula in $Base^{\langle \rangle} d_{\mathcal{I},f}(\tau)$ is given by D1 D3
- if φ is a formula of the form $[\lambda \varphi]$, then $d_{\mathcal{I},f}(\tau)$ is given by D5
- if φ is a formula of any other form, then $d_{\mathcal{I},f}(\tau) = d_{\mathcal{I},f}([\lambda \varphi])$

Definitions of Truth, Logical Truth (Validity), and Logical Consequence

Now where \mathcal{I} and f are given and w_0 is the distinguished actual world of the domain of possible worlds **W** in \mathcal{I} , we say that φ is *true under* \mathcal{I} and f ('true_{\mathcal{I},f}') if and only if under \mathcal{I} and f, φ is *true at* w_0 . That is, using the formal notation $\models_{\mathcal{I},f} \varphi$ for the definiendum, we have:

 $\models_{\mathcal{I},f} \varphi$ if and only if $w_0 \models_{\mathcal{I},f} \varphi$

And we now say that φ is *true under* \mathcal{I} just in case for every f, φ is true under \mathcal{I} and f:

$$\models_{\mathcal{I}} \varphi =_{df} \forall f(\models_{\mathcal{I},f} \varphi)$$

Thus, if φ is not true under \mathcal{I} , then some assignment f is such that $w_0 \not\models_{\mathcal{I},f} \varphi$ and we write $\not\models_{\mathcal{I}} \varphi$. We say that a formula φ is *false under* \mathcal{I} if and only if no assignment function f is such that $\models_{\mathcal{I},f} \varphi$, i.e., iff no assignment function f is such that $w_0 \models_{\mathcal{I},f} \varphi$. So open formulas may be neither true under \mathcal{I} nor false under \mathcal{I} , whereas a sentence (i.e., a closed formula) will be either true under \mathcal{I} or false under \mathcal{I} .

In the usual manner, we say that φ is *valid* or *logically true* if and only if φ is true under every interpretation \mathcal{I} , i.e.,

 $\models \varphi =_{df} \forall \mathcal{I}(\models_{\mathcal{I}} \varphi)$

Clearly, given our previous definitions, it follows that:

 $\models \varphi$ if and only if for every \mathcal{I} and f, $\models_{\mathcal{I},f} \varphi$, i.e.,

 $\models \varphi$ if and only if for every \mathcal{I} and f, $w_0 \models_{\mathcal{I},f} \varphi$

In what follows, when we say that a schema is valid, we mean that all of its instances are valid. Clearly, if a formula φ is not valid, then for some interpretation \mathcal{I} and assignment f, $w_0 \not\models_{\mathcal{I},f} \varphi$.

Finally, we conclude the definitions for a general interpretation with several more traditional definitions:

- φ is *satisfiable* if and only if there is some interpretation \mathcal{I} and assignment f such that φ is true_{*I*,*f*}, i.e., iff $\exists \mathcal{I} \exists f (\models_{\mathcal{I},f} \varphi)$.
- φ logically implies ψ (or ψ is a logical consequence of φ) just in case, for every interpretation I and assignment f, if φ is true_{I,f}, then ψ is true_{I,f}:

 $\varphi \models \psi =_{df} \forall \mathcal{I} \forall f (\models_{\mathcal{I}, f} \varphi \rightarrow \models_{\mathcal{I}, f} \psi)$

- φ and ψ are *logically equivalent* just in case both $\varphi \models \psi$ and $\psi \models \varphi$
- φ is a *logical consequence* of a set of formulas Γ just in case, for every interpretation I and assignment f, if every member of Γ is true_{I,f}, then φ is true_{I,f}:

$$\Gamma \models \varphi =_{df} \forall \mathcal{I} \forall f [\forall \psi (\psi \in \Gamma \to \models_{\mathcal{I}, f} \psi) \to \models_{\mathcal{I}, f} \varphi]$$